76 research outputs found

    Challenge IEEE-ISBI/TCB : Application of Covariance matrices and wavelet marginals

    Full text link
    This short memo aims at explaining our approach for the challenge IEEE-ISBI on Bone Texture Characterization. In this work, we focus on the use of covariance matrices and wavelet marginals in an SVM classifier.Comment: 9 pages, 4 Figues, 2 Tables, Challenge IEEE-ISBI : Bone Texture Characterizatio

    Challenges in anomaly and change point detection

    Full text link
    This paper presents an introduction to the state-of-the-art in anomaly and change-point detection. On the one hand, the main concepts needed to understand the vast scientific literature on those subjects are introduced. On the other, a selection of important surveys and books, as well as two selected active research topics in the field, are presented

    Using Posters to Recommend Anime and Mangas in a Cold-Start Scenario

    Full text link
    Item cold-start is a classical issue in recommender systems that affects anime and manga recommendations as well. This problem can be framed as follows: how to predict whether a user will like a manga that received few ratings from the community? Content-based techniques can alleviate this issue but require extra information, that is usually expensive to gather. In this paper, we use a deep learning technique, Illustration2Vec, to easily extract tag information from the manga and anime posters (e.g., sword, or ponytail). We propose BALSE (Blended Alternate Least Squares with Explanation), a new model for collaborative filtering, that benefits from this extra information to recommend mangas. We show, using real data from an online manga recommender system called Mangaki, that our model improves substantially the quality of recommendations, especially for less-known manga, and is able to provide an interpretation of the taste of the users.Comment: 6 pages, 3 figures, 1 table, accepted at the MANPU 2017 workshop, co-located with ICDAR 2017 in Kyoto on November 10, 201

    Uplift Modeling from Separate Labels

    Get PDF
    Uplift modeling is aimed at estimating the incremental impact of an action on an individual's behavior, which is useful in various application domains such as targeted marketing (advertisement campaigns) and personalized medicine (medical treatments). Conventional methods of uplift modeling require every instance to be jointly equipped with two types of labels: the taken action and its outcome. However, obtaining two labels for each instance at the same time is difficult or expensive in many real-world problems. In this paper, we propose a novel method of uplift modeling that is applicable to a more practical setting where only one type of labels is available for each instance. We show a mean squared error bound for the proposed estimator and demonstrate its effectiveness through experiments
    corecore